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Abstract

This paper studies the strategic asset allocation problem of individuals with a mul-

tiperiod utility function over consumption. Our main contribution is to incorporate the

existence of nonlinear dynamics in the relative risk aversion coefficient of power utility

functions characterizing individuals’ preferences. This coefficient is modeled as a two-

regime piecewise linear process not only capturing the evolution of the economy but also

nonlinearities due to differences in risk attitudes towards the short and long term defined

over the individual’s multiperiod, potentially infinite, investment horizon. This modeling

strategy is applied in an empirical application to study the impact of model misspecifi-

cation due to using constant or linear characterizations of relative risk aversion on the

optimal portfolio decision of strategic individuals holding a portfolio of stocks, bonds and

cash. The empirical results suggest that individual’s risk aversion and optimal portfo-

lio allocation do not only vary with the economic environment but are also investment

horizon specific.
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1 Introduction

Optimal portfolio decisions depend on the details of the economic and financial environment:

the financial assets that are available, their expected returns and risks, and the preferences and

circumstances of investors. These details become particularly relevant for long-term investors.

Such investors must concern themselves not only with expected returns and risks today, but

with the way in which expected returns and risks may change over time. It is widely understood

at least since the work of Samuelson (1969) and Merton (1969, 1971, 1973) that the solution

to a multiperiod portfolio choice problem can be very different from the solution to a static

portfolio choice problem. In particular, if investment opportunities vary over time then long-

term investors care about shocks to investment opportunities as well as shocks to wealth itself.

This can give rise to intertemporal hedging demands for financial assets and lead to strategic

asset allocation as a result of the farsighted response of investors to time-varying investment

opportunities.

Unfortunately, intertemporal asset allocation models are hard to solve in closed form unless

strong assumptions on the investor’s objective function such as log preferences or a lognormal

distribution for asset returns are imposed. More generally, the lack of closed-form solutions for

optimal portfolios with constant relative risk aversion has limited the applicability of the Merton

model and has not displaced the Markowitz model. This situation has begun to change as a

result of several developments in numerical methods and continuous time finance models such

as Balduzzi and Lynch (1999), Barberis (2000), Brennan et al. (1997, 1999) and Lynch (2001).

Approximate analytical solutions to the Merton model have been developed in Campbell and

Viceira (1999, 2001, 2002) and Campbell et al. (2003) for models exhibiting an intertemporal

elasticity of substitution close to one. A recent alternative to solving the investor optimal

portfolio problem has been proposed by Brandt (1999), Aı̈t-Sahalia and Brandt (2001) and

Brandt and Santa-Clara (2006). These authors focus directly on the dependence of the portfolio
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weights on the predictors. They do this by solving sample analogues of the conditional Euler

equations that characterize the optimal portfolio choice. These seminal contributions to the

literature on optimal asset allocation impose in most cases an exogenous and constant relative

risk aversion coefficient to model individuals’ risk attitude and derive the corresponding optimal

portfolio allocation under different assumptions on such relative risk aversion coefficient.

The assumption that the relative risk aversion coefficient is constant over time can be

misleading in many circumstances and have important implications on the asset allocation of

strategic investors if the utility function used to describe investor’s preferences is misspecified.

This observation is supported by some empirical evidence, see Cohn et al. (1975) and Friend and

Blume (1975), that document that the fraction of wealth households invest in stocks increases

with their wealth. One common explanation for the observed pattern of portfolio shares is that

relative risk aversion decreases with wealth. Morin and Suarez (1983), for example, corroborate

this finding empirically using portfolio data to elicit households’ preferences. A byproduct of

this observation is that relative risk aversion is dynamic unless the wealth held by the investor

is constant over time.

Another plausible explanation for the existence of dynamics in the relative risk aversion

coefficient is the presence of habit formation. In a habit formation model, see Campbell and

Cochrane (1999), Chan and Kogan (2002), and more recently, Brandt and Wang (2003), the

representative agent’s relative risk aversion varies with the difference between consumption and

the agent’s habit. This habit can be interpreted as a minimum subsistence level required by

the individual or some dynamic value that is formed through past consumption. The existence

of dynamics in relative risk aversion can also be captured by changes in the risk aversion coef-

ficient of individuals. A more uncertain economic environment can lead individuals to consider

more cautiously the same investment opportunities than under a favourable environment. The

plausibility of a time-varying risk aversion coefficient gains importance for investors with mul-

3



tiperiod objective functions. For these individuals the influence on their investment decision of

variation in future risk aversion is twofold. First, relative risk aversion can change due to the

future evolution of the economy, and second, strategic investors can have different risk attitudes

towards the short and long term with these two terms defined over the individual’s multiperiod

investment horizon.

The aim of this paper is to incorporate these features into standard formulations of the

strategic optimal portfolio allocation problem and empirically assess the effect on optimal port-

folio allocation of misspecification of the utility function due to assuming wrong functional

forms for the relative risk aversion coefficient. To do this we entertain individuals characterized

by three distinguishing features. First, these individuals are considered to invest strategically,

see Brennan et al. (1997), in the sense that their investment decisions entertain more than one

period. Second, these individuals exhibit a risk aversion coefficient that is time varying with

dynamics driven by a set of state variables reflecting macroeconomic and financial conditions.

Finally, these individuals react differently to the short term than the long term defined over

their multiperiod utility functions. This assumption is reflected in a risk aversion coefficient

that not only changes with time but also with the investment horizon. In order to model these

two sources of variation in risk aversion we consider a piecewise linear model with threshold

nonlinearity determined by the period within the individual’s investment horizon that separates

the short from the long term. Intuitively, the individual exhibits different risk attitudes to neg-

ative events taking place before the threshold period than in the distant future. The choice of a

piecewise linear function is for modeling convenience and simplicity. Nevertheless, a piecewise

linear function can be considered as a general alternative to a linear function, that provides a

better approximation to a smooth nonlinear function than that from a (global) linear function.

As mentioned above the existence of a multiperiod optimal decision problem implies in

most cases the lack of closed form solutions and the need of dynamic stochastic programming
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methods. To overcome this problem we take advantage of the methodology proposed in Aı̈t-

Sahalia and Brandt (2001) and assume that the optimal portfolio weights are driven by a

parametric linear policy rule. In this way we entertain two different parametric policy rules: a

portfolio policy rule driving the dynamics of the optimal asset allocation in terms of a set of

state variables, and a risk aversion policy rule driving the dynamics of relative risk aversion. By

doing this we show that the first order conditions of the optimization problem over a potentially

infinite investment horizon can be expressed in terms of a simple system of equations that is

overidentified. The overidentification property entails a natural empirical representation of the

system of equations that can be used for parameter estimation and statistical inference. More

specifically, we can estimate the marginal contributions of the state variables to the parametric

policy rules using the sample counterparts of the multiple Euler equations that characterize the

optimal portfolio choice and test the correct specification of the parametric policy rules using

a version of the overidentification J-test developed by Hansen (1982).

The choice of a piecewise linear function for modeling the dynamics of risk aversion is

formalized by proposing a likelihood ratio test comparing the suitability of the linear and

nonlinear risk aversion specifications. The econometric methodology is similar in spirit to

the seminal papers by Andrews (1993), Andrews and Ploberger (1994) and Hansen (1996)

that discuss how to make inference when a nuisance parameter is not identified under the null

hypothesis. In our setting the nuisance parameter that is not identified under the null hypothesis

is the threshold value, that is, the period in the individual’s strategic horizon separating the

short term from the long term. The asymptotic distribution of this test is nonstandard and is

approximated using a p-value transformation implemented through a multiplier method applied

to the first order conditions of the individual’s maximization problem.

This methodology is explored in an empirical application assessing the optimal portfolio

decisions of an strategic investor holding a tactical portfolio given by stocks, bonds and cash
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spanning thirty years of financial returns. This empirical exercise closely follows similar studies

such as Brennan et al. (1997), Brandt (1999) and Campbell et al. (2003), among many others.

The investor is assumed to invest in three assets - a one-month Treasury bill as riskless security,

a long-term bond, and an equity portfolio. We consider a set of state variables that is common

in the predictive literature on asset pricing and portfolio theory: the detrended short-term

interest rate, the U.S. credit spread, the S&P 500 trend and the one-month average of excess

stock and bond returns. The effect of the state variables is not uniform across assets, in fact,

we observe more predictive power for the optimal allocation to bonds than stocks. These state

variables also help to predict the dynamics of the individual’s relative risk aversion coefficient.

Interestingly, we find empirical support for the existence of a short term and a long term regime

in such coefficient. Our results are robust to the choice of strategic horizon and to replacing

consumption for wealth in the individual’s utility function.

This paper is related to several literatures on optimal portfolio allocation. The closest

contributions are the sequel of papers by Brandt (1999), Aı̈t-Sahalia and Brandt (2001) and

Brandt and Santa-Clara (2006). It is also closely related to the literature on strategic asset al-

location initiated by Merton (1968, 1971, 1973) and continued by Campbell and Viceira (1999,

2011, 2002). It connects with the literature on habit formation widely explored in studies of

stock market behavior by Campbell and Cochrane (1999), Chan and Kogan (2002) or Brun-

nermeier and Nagel (2008), among many others. Our approach to modeling the dynamics of

risk aversion shares the view introduced by Brandt and Wang (2003). These authors formulate

a consumption-based asset pricing model in which aggregate risk aversion varies in response to

news about consumption growth and inflation dynamics. In contrast to previous models, they

explicitly model the dynamics of risk aversion using a stochastic mean-reverting autoregressive

model. Finally, the current paper is also related to the literature on nonlinearity tests and

inference under the presence of nuisance parameters such as Andrews (1993), Andrews and
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Ploberger (1994) and Hansen (1996).

The rest of the article is structured as follows. Section 2 presents the model and derives the

system of overidentified equations corresponding to the first order conditions of the multiperiod

maximization problem of an individual exhibiting a time-varying piecewise linear risk aversion

coefficient. Section 3 discusses the implementation of the generalized method of moments

(GMM) to estimate the optimal portfolio weights and the risk aversion coefficients and briefly

discusses the corresponding asymptotic theory. Section 4 presents two types of econometric

tests to assess the parametric assumptions used in the development of our model. First, we

introduce in detail a threshold nonlinearity test to assess statistically the existence of piecewise

nonlinearities in the individual’s strategic multiperiod utility function, and second, we discuss

several specification tests to assess the suitability of the parametric policy rules proposed in

the paper. Section 5 presents an empirical application to derive the optimal allocation to a

portfolio of stocks, bonds and cash for a strategic investor with a multiperiod utility function.

Section 6 concludes.

2 The Model

Consider the portfolio choice of an investor who maximizes the expected utility of real con-

sumption (ct) over multiple, potentially infinite, K periods. Assume that the utility function

is additively time separable and takes the form

K∑
j=0

βjEt

[
c

1−γ(j)
t+j

1− γ(j)

]
, (1)

with

ln γ(j) ≡ ln γ(j, zt+j) = γ′zt+j + η′zt+j1(j > k0) (2)
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where zt+j is a n × 1 vector comprising a constant and a set of n − 1 macroeconomic and

financial variables reflecting all the information available to the investor at time t + j. Two

parameters describe individuals’ preferences: the discount factor β measures patience, the

willingness to give up consumption today for consumption tomorrow, and the coefficient γ(j)

captures risk aversion, the reluctance to trade consumption for a fair gamble over consumption

today. The parameters γ = (γc, γ1, . . . , γn−1)′ and η = (ηc, η1, . . . , ηn−1)′ capture the effect of

these variables on the risk aversion coefficient. The dynamics of the risk aversion function are

driven by changes in macroeconomic conditions and the individual’s risk attitude with respect

to the strategic investment horizon. The threshold k0 denotes the period separating the short

from the long term defined over the K−period individual’s investment horizon, and the vector

η captures the differences in the risk aversion coefficient between the short and long term. The

structural model (2) for the risk aversion coefficient γ(j) can be interpreted as an alternative

to the stochastic mean-reverting autoregressive process proposed in Brandt and Wang (2003)

for modeling relative risk aversion. The above function can be alternatively expressed as

ln γ(j) = γ′zt+j + η′zt+j1(ωj > ω0) (3)

with ω0, ωj ∈ [ωmin, ωmax] ∈ (0, 1) and such that k0 = dω0Ke where d·e denotes the integer part

of the value inside the brackets.

The individual begins life with an exogenous endowment w0 ≥ 0. This endowment accumu-

lates over time according to the equation

wt+1 = (1 + rpt+1)(wt − ct). (4)

At the beginning of the period t+ 1 the individual receives income from allocating resources in

8



an investment portfolio offering a real return rpt+1. The portfolio return is defined as

rpt+1(αt) = rf,t+1 + α′tr
e
t+1, (5)

with ret+1 = (r1,t+1 − rf,t+1, . . . , rm,t+1 − rf,t+1)′ denoting the vector of excess returns on the m

risky assets over the real risk-free rate rf,t+1, and αt = (α1,t, . . . , αm,t)
′ denoting the different

allocations to risky assets. In order to be able to solve a multiperiod maximization problem

that accommodates in a parsimonious way arbitrarily long investment horizons, we entertain

the parametric portfolio policy rule introduced in the seminal contributions of Aı̈t -Sahalia and

Brandt (2001), Brandt and Santa-Clara (2006) and Brandt et al. (2009):

αh,t+i = λ′hzt+i, h = 1, . . . ,m, (6)

with zt = (1, z1,t, . . . , zn,t)
′ a set of state variables describing the evolution of the economy

and reflecting all the relevant information available to the individual at time t, and λh =

(λh,1, . . . , λh,n)′ the corresponding vector of parameters. Time variation of the optimal asset

allocation is introduced through the dynamics of the state variables. This specification of the

portfolio weights has two main features. First, it allows us to study the marginal effects of the

state variables on the optimal portfolio weights through the set of parameters λ, and second,

it avoids the introduction of time consuming stochastic dynamic programming methods. As

a byproduct, this specification of the optimal portfolio weights could accommodate arbitrarily

long horizons in the individual’s objective function. A potential downside of this parametric

approach is to force the individual’s optimal portfolio policy rule to be linear and with the

same parameter values over the long term horizon. Nevertheless, for finite horizon (K <

∞) objective functions, more sophisticated models can be developed that entertain different

parametric portfolio policy rules for different investment horizons i = 1, . . . , K. This approach
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significantly increases the computational complexity of the methodology and is beyond the aim

of this study.

The objective of solving the asset allocation problem for long term investors is challenged by

the definition of the individuals’ preferences in terms of consumption rather than wealth. We,

nevertheless, pursue this route as it leads to more realistic representations of the preferences

of long term individuals. The augmented complexity of the optimization problem introduced

by jointly maximizing over the optimal portfolio weights and consumption is reduced in our

framework by assuming that consumption is simply a fixed fraction of wealth wt in each period:

ct = (1− θ)wt with 0 < θ ≤ 1. (7)

This assumption simplifies considerably the optimization problem but allows, at the same time,

for some flexibility in the study of the optimal portfolio allocation problem under different con-

sumption streams. The limiting case θ = 1 describes, for example, the strategic asset allocation

of a long-term investor only interested with maximizing the utility of the stream of wealth

rather than consumption. This assumption, although restrictive from a macroeconomic per-

spective, can be motivated under different interpretations of the optimal consumption-wealth

ratio. Early pioneering studies such as Friedman (1957) already notes this relation between

consumption and wealth in his celebrated Permanent Income Hypothesis. Samuelson (1969)

also observes such relationship between consumption and wealth in a Ramsey model of con-

sumption. In Samuelson’s seminal study the fraction of wealth consumed by the individual in

each period differs depending on whether utility is of log form or reflects risk aversion. In the

former case, for example, the optimal consumption-wealth ratio is characterized by the time

preference parameter β used by the individual for discounting future utility. Recently, He and

Krishnamurthy (2013), in an asset pricing context, also assume a constant relationship between
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consumption and wealth over time.

Condition (7) allows us to write the investor’s wealth process at time t + j in terms of the

compound j−period gross return, the parameter θ and wt. More formally,

wt+j = θj
j

Π
i=1

(1 + rpt+i(λ
′
hzt+i−1))wt. (8)

This representation of the individual’s stream of wealth over time has major implications for

parameter estimation and statistical inference.

2.1 Optimal portfolio choice under risk aversion

In this section we derive the first order conditions of the long term optimal portfolio choice

problem for a risk-averse individual with preferences described above. Expression (8) and

simple algebra shows that the individual’s maximization problem can be written as

max
{λhs}

{
K∑
j=0

Et

[
δjt,j

c
1−γ(j)
t

1− γ(j)

(
j

Π
i=1

(1 + rpt+i(λ
′zt+i−1))

)1−γ(j)
]}

(9)

with δt,j = βθ1−γ(j). Under the initial condition ct = 1 the first order conditions of this

optimization problem with respect to the vector of parameters λhs, with h = 1, . . . ,m and

s = 1, . . . , n, provide for each ω ∈ [ωmin, ωmax] a system of mn equations characterized by the

following conditions:

Et

[
K∑
j=1

δjt,jψt,j(zs;λh, γ, η, ω)

]
= 0 (10)

with

ψt,j(zs;λh, γ, η, ω) =

(
j∑
i=1

zs,t+i−1r
e
h,t+i

1 + rpt+i(λ
′
hzt+i−1)

)(
j

Π
i=1

(1 + rpt+i(λ
′zt+i−1))

)1−γ(j)

. (11)
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The set of conditional moments (10) can be expressed as an augmented set of unconditional

moments if we assume that the conditioning information set can be reflected by the set of state

variables zt. Then, the set of unconditional moments is

E

[
K∑
j=1

δjt,jψt,j(zs;λh, γ, η, ω)⊗ zt

]
= 0 (12)

where ⊗ denotes element by element multiplication. More specifically, expression (12) yields

the following system of mn2 conditions:

φs̃h,s(µ, ω) ≡ E

[
K∑
j=1

δjt,jψt,j(zs;λh, γ, η, ω) zs̃,t

]
= 0, (13)

where µ = (λ, γ, η) and h = 1, . . . ,m, s, s̃ = 1, . . . , n and z1,t = 1.

The main advantage of this approach is that the first order conditions of the maximization

problem of a strategic investor with power utility yield a simple system of equations that is

overidentified and provides a very intuitive empirical representation. This property is exploited

in the econometric section to derive suitable estimators of the portfolio weights and carry out

statistical tests of the specifications (3) and (6).

3 Econometric methods: estimation

This section presents suitable methods to estimate the optimal portfolio weights and the param-

eters driving the dynamics of the risk aversion coefficient. A suitable empirical representation

of the Euler equation (13) is

φ̂s̃h,s(µ, ω) ≡ 1

T −K∗
T−K∗∑
t=1

ehs,t(µ, ω)zs̃,t = 0 (14)
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with

ehs,t(µ, ω) =
K∗∑
j=1

δjt,jψt,j(zs;λh, γ, η, ω) (15)

and T is the sample size used for estimating the model parameters; K∗ = K for the finite

multiperiod case and K∗ = min{j | βj ≤ tol, j = 1, . . . ,∞} for the infinite horizon case; tol

denotes a tolerance level determining the truncation of the infinite horizon model. Statistical

tests can be devised to assess the suitability of the finite truncation K∗ in infinite horizon

models.

For each ω ∈ [ωmin, ωmax], let g(µ, ω) and gT (µ, ω) be the mn2 × 1 vectors that stack each

of the sample moments φs̃h,s(µ, ω) and φ̂s̃h,s(µ, ω), respectively, indexed by h, s and s̃, with

h = 1, . . . ,m and s, s̃ = 1, . . . , n. The idea behind GMM is to choose µ̂T so as to make the

sample moments gT (µ, ω) as close to zero as possible. An important distinction with respect

to the linear case is the existence of a threshold parameter ω that determines the presence of

nonlinearities in the investor’s strategic behavior. This parameter introduces a break in the

individual’s objective function that determines two regimes in the functional form of the risk

aversion coefficient.

To estimate the model parameters in the general case given by absence of knowledge of the

true population parameter ω, we propose a two-step estimation procedure. First, for each ω,

we define the set of parameter estimators µ̂T (ω) of the true parameter vector µ ∈ Θ as

µ̂T (ω) = arg min
µ∈Θ

g′T (µ, ω)V −1
T (ω) gT (µ, ω) (16)

where

VT (ω) =
1

T −K∗
T−K∗∑
t=1

eh1s1,t(µ, ω)eh2s2,t(µ, ω) zs̃1,tzs̃2,t
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+
1

T −K∗
T−K∗∑
t=1

T−K∗∑
t′=1
t′ 6=t

eh1s1,t(µ, ω)eh2s2,t′(µ, ω) zs̃1,tzs̃2,t′ (17)

is a consistent estimator of V0(ω) = E[gT (µ, ω)g′T (µ, ω)], a mn2 ×mn2, possibly random, non-

negative definite weight matrix, whose rank is greater than or equal to mn. This estimator

highlights the strong persistence in the covariance matrix V0(ω). This persistence is due to the

presence of serial correlation produced by considering a strategic investment horizon (K∗ > 1)

in the individual’s objective function. The second step of the estimation process consists of

finding the strategic horizon that minimizes the objective function on ω. More formally,

ω̂T = arg min
ω∈[ωmin,ωmax]

µ̂T (ω). (18)

The strategic horizon associated to the optimal ω̂T is given by k̂T = dω̂TKe. In order to

guarantee the consistency of the estimators of the model parameters we need to assume that

{ret+1, zt} is strictly stationary and α−mixing with α of size −r/(r − 2), with r > 2; E[ztz
′
t]

is nonsingular and there exists some δ > 0 such that E[||zt||2r+δ] < ∞, see proposition 1 of

Giacomini and Komunjer (2005) for similar assumptions in a quantile regression setting.

A similar two-step procedure is proposed by Seo and Shin (2014) in a dynamic panel data

setting. In this setting these authors derive the asymptotic distribution of the model parameters

including the threshold. In contrast to the conventional theory for threshold estimators derived

from least squares, e.g. Chan (1993) and Hansen (1996), the threshold parameter estimator

is asymptotically normal irrespective of whether the regression function is continuous or not.

Furthermore, these authors show that the standard inference on the threshold estimator is

feasible, though the convergence rate is slower than
√
T . A direct application of the asymptotic

results obtained in Seo and Shin (2014) to this setting entails that under some further regularity
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conditions, as for example, K/T → 0, it holds that

√
T −K (µ̂T (ω̂T )− µ)

d→ N
(

0,
(
D′(ω)Ω−1(ω)D(ω)

)−1
)

(19)

with Ω(ω) = E[g(µ, ω)g′(µ, ω)] and D(ω) ≡ D(µ, ω) = ∂g(µ,ω)
∂µ

a function that is continuous in

the vector µ.

4 Econometric methods: hypothesis testing

This section presents a threshold nonlinearity test to statistically assess whether there exist

dynamics in the risk aversion coefficient that can be modeled as a two-regime piecewise linear

process. Second, we exploit the overidentified system of equations (12) to propose a specification

test for the parametric formulation of the risk aversion function (3) and the policy rule (6).

4.1 Threshold nonlinearity tests

Following the literature on threshold and structural break models we will distinguish two cases.

One, in which the timing of the break ω0 is known, and a second case, in which ω0 is not

identified under the null hypothesis. In both scenarios the null hypothesis corresponds to the

case

H0 : ηc = η1 = . . . = ηn−1 = 0 against HA : ηs 6= 0 for some s = c, 1, . . . , n− 1,

in the dynamic risk aversion coefficient (3). This composite test is standard for ω0 known and

appropriate test statistics can be deployed by exploiting the overidentified system of equations

(12). More specifically, a suitable nonlinearity test for the null hypothesis is the likelihood ratio
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test

LK∗(ω0) = (T −K∗) (s(µ̂0T , ω0)− s(µ̂T , ω0)) (20)

with s(µ̂T , ω0) = g′T (µ̂T , ω0)V̂ −1
T (ω0)gT (µ̂T , ω0). Similarly, s(µ̂0T , ω0) is the version of the statis-

tic under the null hypothesis H0. It is important to note that the covariance matrix of the

parameter estimators refers for both statistics s(µ̂T , ω0) and s(µ̂0T , ω0) to the same consistent

estimator of the covariance matrix V0(ω0) estimated under the unrestricted model. A natural

candidate robust to the presence of serial correlation in the sample moments is the sample

covariance matrix

V̂T (ω) =
1

T −K∗
T−K∗∑
t=1

êh1s1,têh2s2,tzs̃1,tzs̃2,t +
1

T −K∗
T−K∗∑
t=1

T−K∗∑
t′=1
t′ 6=t

êh1s1,têh2s2,t′zs̃1,tzs̃2,t′ (21)

with

êhs,t =
K∗∑
j=1

δ̂jt,jψt,j(zs; λ̂h, γ̂T , η̂T , ω) (22)

where δ̂t,j = βθ1−γ̂(j), γ̂(j) = exp (γ̂′T zt+j + η̂′T zt+j1(ωj > ω)) and

ψt,j(zs; λ̂h, γ̂T , η̂T , ω) =

(
j∑
i=1

zs,t+i−1r
e
h,t+i

1 + rpt+i(λ̂
′
hzt+i−1)

)(
j

Π
i=1

(1 + rpt+i(λ̂
′zt+i−1))

)1−γ̂(j)

.

Under these conditions, it holds that

LK∗(ω)
d→ χ2

n (23)

with n the number of restrictions implied by the null hypothesis H0.

A similar testing procedure can be developed to assess the existence of linear dynamics in

the risk aversion coefficient against constant risk aversion. To do this, we take as benchmark
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under the alternative hypothesis a simplified version of (3) given by γ(j) = exp(γ′zt+j). The

relevant hypothesis is

H0 : γ1 = . . . = γn−1 = 0 against HA : γs 6= 0 for some s = 1, . . . , n− 1, (24)

with the vector (γ1, . . . , γn−1)′ denoting the parameters associated to the state variables z2,t, . . . , zn,t.

For the most interesting cases, such as testing for nonlinearity of the preferences of the

strategic investor when ω0 is not known, ω0 ∈ [ωmin, ωmax] is a nuisance parameter that cannot

be identified under the null hypothesis. In this case Hansen (1996) shows that the composite

nonlinearity test is nonstandard. As proposed by this author, see also Davies (1977, 1987) or

Andrews and Ploberger (1994) in different contexts, hypothesis tests for nonlinearity can be

based on different functionals of the relevant test statistic computed over the domain of the

nuisance parameter. In our framework the relevant test statistic is lK∗ = sup
ω∈[ωmin,ωmax]

LK∗(ω)

with sup standing for the supremum functional. In this case the statistic s(µ, ω) is a function on

ω ∈ [ωmin, ωmax]. To formalize the asymptotic distribution of LK∗(ω) we define the covariance

function

Σ0(ω1, ω2) = E [gT (µ, ω1)g′T (µ, ω2)] (25)

and its empirical counterpart

Σ̂T (ω1, ω2) =
1

T −K∗
T−K∗∑
t=1

êh1s1,t(µ̂T , ω1)êh2s2,t(µ̂T , ω2)zs̃1,tzs̃2,t

+
1

T −K∗
T−K∗∑
t=1

T−K∗∑
t′=1
t′ 6=t

êh1s1,t(µ̂T , ω1)êh2s2,t′(µ̂T , ω2)zs̃1,tzs̃2,t′

with ω1, ω2 ∈ [ωmin, ωmax]. These expressions are the functional counterparts of the covariance

matrices V0(ω) and V̂T (ω), respectively.
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To derive the asymptotic distribution of the relevant test we define the processes ST (µ̂T , ω) =
√
T −K∗ gT (µ̂T , ω) and S0T (µ̂0T , ω) =

√
T −K∗ gT (µ̂0T , ω). Under some suitable regularity

conditions on the uniform convergence of Σ̂T (ω1, ω2) to Σ0(ω1, ω2) over its compact support,

see Hansen (1996) for more technical details, the process ST (µ̂T , ω) converges weakly to a

multivariate zero mean Gaussian process, S(µ, ω), defined by the covariance function Σ0(ω1, ω2).

Similarly, under the null hypothesis H0 the process S0T (µ̂0T , ω) converges to a multivariate zero-

mean Gaussian process S0(µ0, ω). Therefore, under the null hypothesis, the process LK∗(ω)

converges weakly to the following chi-square process

L0(ω) = S ′0(µ0, ω)Σ0(ω, ω)−1S0(µ0, ω)− S ′(µ, ω)Σ0(ω, ω)−1S(µ, ω). (26)

Consequently, the asymptotic distribution of the supremum functional is l0 = sup
ω∈[ωmin,ωmax]

L0(ω).

Since the null distribution (26) depends upon the covariance function Σ0, critical values cannot

be tabulated. To obtain the p−values of the test we derive a p-value transformation similar in

spirit to the work of Hansen (1996).

Let F0(·) denote the distribution function of l0, and define pT = 1 − F0(lK∗). The above

result shows that pT converges in probability to p0 = 1−F0(l0), that under the null hypothesis is

uniform on [0, 1]. Thus the asymptotic null distribution of pT is free of nuisance parameters. The

rejection rule of our test is given by pT < α with α the significance level and pT the asymptotic

p-value. The random variable l0 can be written as a continuous functional of the Gaussian

processes S(µ, ω) and S0(µ0, ω), which are completely described by the covariance function

Σ0(ω1, ω2). To implement the p-value transformation, we operate conditional on the sample

= = {(r′t+1, z
′
t)
′}Tt=1 and define the conditional multivariate mean-zero Gaussian processes ŜT

and Ŝ0T . These processes can be generated by letting {vt}T−1
t=0 be i.i.d. N(0, 1) random variables,
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and setting for h = 1, . . . ,m and s, s̃ = 1, . . . , n, the following processes

ŜT (µ̂T , ω) =
1√

T −K∗

T−K∗∑
t=1

êhs,t zs̃,tvt. (27)

Similarly, we have

Ŝ0T (µ̂0T , ω) =
1√

T −K∗

T−K∗∑
t=1

ê0
hs,t zs̃,tvt (28)

with ê0
hs,t the version of êhs,t in (22) obtained under the null hypothesis H0. The corresponding

conditional chi-square process is

L̂K∗(ω) = Ŝ ′0T (µ̂0T , ω)V̂ −1
T (ω)Ŝ0T (µ̂0T , ω)− Ŝ ′T (µ̂T , ω)V̂ −1

T (ω)ŜT (µ̂T , ω) (29)

and the corresponding test statistic is l̂K∗ = sup
ω∈[ωmin,ωmax]

L̂K∗(ω). Finally, let F̂0 denote the

conditional distribution function of l̂K∗ and p̂T = 1− F̂0(lK∗).

The introduction of the zero-mean random variable vt implies that, conditionally, the co-

variance function of ŜT (µ̂T , ω) is equal to Σ̂T (ω, ω), that is,

E

[
1

T −K∗
T−K∗∑
t=1

T−K∗∑
t′=1

êhs,t zs̃,têhs,t′ zs̃,t′vtvt′ | =

]
=

1

T −K∗
T−K∗∑
t=1

T−K∗∑
t′=1

êhs,t zs̃,têhs,t′ zs̃,t′E [vtvt′ | =] = Σ̂T (ω, ω).

Following similar arguments to the proof of Theorem 2 in Hansen (1996), it can be shown

that the quantity p̂T is asymptotically equivalent to pT under both the null and alternative

hypotheses. The conditional distribution function F̂T is not directly observable so neither is

the random variable p̂T . Nevertheless, these quantities can be approximated to any desired

degree of accuracy using standard simulation techniques. The following algorithm shows the

implementation of this p-value transformation. Let ΩN define a grid of N points over the

compact set [ωmin, ωmax], and let ωi for i = 1, . . . , N be the set of equidistant points in such
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grid with ω1 = ωmin and ωN = ωmax; for j = 1, . . . , J , execute the following steps:

i) generate the sequence {vjt}Tt=1 i.i.d. random variables;

ii) conditional on the sample = = {(r′t+1, z
′
t)
′}Tt=1, set the quantities ŜjT (µ̂T , ωi) and Ŝj0T (µ̂0T , ωi);

iii) set L̂jK∗(ωi) = Ŝj0T (µ̂0T , ωi)V̂
−1
T (ωi)Ŝ

j
0T (µ̂0T , ωi)− ŜjT (µ̂T , ωi)V̂

−1
T (ωi)Ŝ

j
T (µ̂T , ωi);

iv) set l̂jK∗ = sup
ω∈ΩN

L̂jK∗(ωi).

This gives a random sample (l̂1K∗ , . . . , l̂
J
K∗) from the conditional distribution F̂T . The percentage

of these artificial observations which exceeds the actual test statistic lK∗ : p̂
J
T = 1

J

J∑
j=1

1
(
l̂jK∗ > lK∗

)
is according to the Glivenko-Cantelli theorem a consistent approximation of p̂T as J →∞. In

practice, the null hypothesis H0 is rejected if p̂T < α.

4.2 Specification tests

This section discusses a second type of tests to assess the correct specification of the functional

forms of the risk aversion coefficients (3) and the parametric portfolio policy rule (6). The

system of equations defined in (13) entails the existence of testable restrictions implied by the

econometric model. Estimation of µ sets to zero mn+2n linear combinations of the mn2 sample

orthogonality conditions gT (µ, ω) with ω ∈ [ωmin, ωmax]. The correct specification of the model

implies that, for a fixed ω0, there are mn2 − mn − 2n linearly independent combinations of

gT (µ̂T , ω0) that should be close to zero but are not exactly equal to zero. This hypothesis is

tested using the Hansen test statistic (Hansen, 1982).

Let s(µ̂T , ω0) = gT (µ̂T , ω0)′V̂ −1
T (ω0)gT (µ̂T , ω0), that under the null hypothesis of correct

specification of the model, satisfies

s(µ̂T , ω0)
d→ χ2

mn2−mn−2n. (30)
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The null hypothesis of correct specification of the overidentified equations is rejected at a

significance level α if the test statistic s(µ̂T , ω0) is greater than the critical value χ2
mn2−mn−2n,1−α.

In practice, the parameter ω0 can be replaced by the estimator ω̂T obtained from (18). A similar

specification test can be developed to test the linear version of the above model against the

model exhibiting constant risk aversion. In this case the relevant asymptotic condition is

s(µ̂0T )
d→ χ2

mn2−mn−n, (31)

with s(µ̂0T ) = gT (µ̂0T )′V̂ −1
0T gT (µ̂0T ), where gT (µ̂0T ) and V̂0T are the versions of the sample

moment conditions and the empirical covariance function (21) obtained from the estimation of

the linear dynamic model.

The second specification test that we discuss in this section allows us to compare different

specifications of the multiperiod objective function (1) in terms of the individual’s strategic

horizon. To do this we device a Wald type test that assesses the suitability of specific choices of

the strategic horizon against alternative specifications. This test can naturally accommodate

truncations of the infinite horizon model. Let us consider two different strategic horizons K1

and K2 such that K1 = K∗ < K2 ≤ ∞. The motivation for our test is to assume that for a

given K∗ the contribution of δjt,jψt,j(zs;λh, µ, η, ω0) zs̃,t is not statistically significant for j > K∗.

Let ν(ω0) = E

[
K2∑

j=K1+1

δjt,jψt,j(zs;λh, γ, η, ω0) zs̃,t

]
denote a mn2 vector of moment conditions

indexed by h = 1, . . . ,m and s, s̃ = 1, . . . , n. Under the null hypothesis,

H0,ν : ν1(ω0) = . . . = νmn2(ω0) = 0 against HA,ν : νs(ω0) 6= 0 for some s = 1, . . . ,mn2. (32)

Let ν̂T (ω0) = 1
T−K2

T−K2∑
t=1

ẽhs,t(ω0) zs̃,t with ẽhs,t(ω0) =
K2∑

j=K1+1

δ̂jt,jψt,j(zs; λ̂h, γ̂T , η̂T , ω0) be the

sample counterpart of the vector ν(ω0) indexed by h = 1, . . . ,m and s, s̃ = 1, . . . , n. The

estimator µ̂T = (λ̂T , γ̂T , η̂T ) of µ is obtained under the alternative hypothesis characterized by
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a longer investment horizon in the individual’s objective function. Under the null hypothesis

H0,ν the consistency of the sample moments to ν(ω0) entails that ν̂T (ω0)
p→ 0, and a suitable

test statistic for the joint hypothesis H0,ν is the Wald test

Wr(µ̂T , ω0) = (T −K2)ν̂ ′T Ṽ
−1
T (ω0)ν̂T (33)

with

ṼT (ω0) =
1

T −K2

T−K2∑
t=1

ẽh1s1,t(ω0)ẽh2s2,t(ω0)zs̃1,tzs̃2,t+
1

T −K2

T−K2∑
t=1

T−K2∑
t′=1
t′ 6=t

ẽh1s1,t(ω0)ẽh2s2,t′(ω0)zs̃1,tzs̃2,t′ ,

(34)

that under the null hypothesis H0,ν , it satisfies

Wr(µ̂T , ω0)
d→ χ2

mn2 . (35)

The alternative hypothesis implies the rejection of the truncation of the individual’s strategic

objective function by the first K∗ periods. In practice, the parameter ω0 can be replaced by

the estimator ω̂T obtained from (18).

5 Empirical application

In this section we analyze the optimal portfolio decisions and risk aversion dynamics of an

strategic individual with objective function characterized by the time preference parameter β =

0.95, an strategic horizon of one year (K = 12) and a parameter θ = 0.999 that sets individual’s

consumption to be a tiny fraction of the wealth in each period1. Our aim is to compare the

1The results are qualitatively similar for θ ∈ [0.90, 0.999], however, for values of θ smaller than 0.90 the
algorithm is very unstable and does not converge in many cases.
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optimal portfolio choices and risk aversion attitudes of three different types of strategic investors:

individuals that exhibit a constant relative risk aversion coefficient, individuals that exhibit a

risk aversion coefficient that varies over time according to the dynamics of our set of state

variables, and finally, individuals with a dynamic nonlinear relative risk aversion coefficient.

We consider a tactical asset allocation setting characterized by a portfolio of stocks, bonds

and the one-month real Treasury bill rate. As in Campbell et al. (2003), we do not impose

short-selling restrictions. Our data covers the period January 1980 to December 2010. Monthly

data are collected from Bloomberg on the S&P 500 and G0Q0 Bond Index. The G0Q0 Bond

Index is a Bank of America and Merrill Lynch U.S. Treasury Index that tracks the performance

of U.S. dollar denominated sovereign debt publicly issued by the U.S. government in its domestic

market. The nominal yield on the U.S. one-month risk-free rate is obtained from the Fama and

French database, and the consumer price index (CPI) time series and the yield of the Moody’s

Baa- and Aaa-rated corporate bonds from the U.S. Federal Reserve.

The time-variation of the investment opportunity set is described by a set of state variables

that have been identified in the empirical literature as potential predictors of the excess stock

and bond returns and the short-term ex-post real interest rates. These variables are the de-

trended short-term interest rate (Campbell, 1991), the U.S. credit spread (Fama and French,

1989), the S&P 500 trend (Aı̈t-Sahalia and Brandt, 2001) and the one-month average of the

excess stock and bond returns (Campbell et al., 2003). The detrended short-term interest rate

detrends the short-term rate by subtracting a 12-month backwards moving average. The U.S.

credit spread is defined as the yield difference between Moody’s Baa- and Aaa-rated corporate

bonds. The S&P 500 momentum is the difference between the log of the current S&P 500 index

level and the average index level over the previous 12 months. We demean and standardize all

the state variables in the optimization process (Brandt et al, 2009).

Table 1 reports the sample statistics of the annualized excess stock return, excess bond
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return and short-term ex-post real interest rates. The bond market outperforms the stock

market during this period. In particular, the excess return on the bond index is higher than

for the S&P 500 and exhibits a lower volatility entailing a Sharpe ratio almost three times

higher for bonds than stocks. Additionally, the excess bond return has larger skewness and

lower kurtosis.

[Insert Table 1 about here]

5.1 Empirical results

The parameter estimates driving the optimal portfolio rules and dynamic risk aversion coeffi-

cients are estimated using a two-step Gauss-Newton type algorithm using numerical derivatives

and is implemented in Matlab. In a first stage we initialize the covariance matrix V̂T with the

matrix Imn ⊗ Z ′Z, and in a second stage, after obtaining a first set of parameter estimates,

we repeat the estimation replacing this matrix by a trimmed version of (17). In particular, we

use a Newey-West estimator of the matrices V0(ω) with K = 12 lags for different choices of

ω within the compact set. The covariance matrix V̂T (ω) is also used to perform the different

threshold nonlinearity and specification tests described below.

Table 2 reports estimates of the model parameters for the three models under investigation.

The first column contains the estimates of the nonlinear process characterized by a threshold

nonlinearity on the risk aversion coefficient. The second column reports the parameter estimates

of a simplified version of this model characterized by linear dynamics in the risk aversion

coefficient. The third column contains the benchmark static model employed in the literature.

Note that in contrast to most of the related literature that exogenously imposes different values

of γ and compares the results across specifications, our method allows us to estimate the

dynamics of risk aversion along with the parameters driving the portfolio weights from the

data. Table 2 uncovers three important findings. First, the optimal portfolio weights are driven
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by the dynamics of the state variables. Second, the risk aversion coefficient is dynamic and

responds to the evolution of zt; Third, the nonlinear model adds flexibility in the modeling of

the risk aversion coefficient compared to the linear model. The two-step estimation procedure

establishes the presence of a structural break in the function γ(j) at the seventh lag (k̂T = 7) of

the individual’s strategic horizon. The objective function (16) takes the values 0.0569, 0.0541,

0.0540, 0.0539, 0.0536, 0.0509, 0.0524, 0.0544, and 0.0550 for k = 2, 3, . . . , 10, respectively.

This result implies the existence of an interior solution to the minimization problem (18),

and provides statistical support to the presence of two regimes in the risk aversion coefficient.

The short-term regime is given by γ′zt and corresponds to the relative risk aversion coefficient

exhibited by the individual over the first seven investment horizons of the multiperiod utility

function. The long-term regime, characterized by (γ + η)′zt, reflects relative risk aversion for

the second period.

We proceed to explain these findings in more detail. The magnitude of the parameter

estimates in table 2 shows the relevance of the state variables in describing the optimal portfolio

weights and also the risk aversion coefficients. The statistical significance of these parameters

is particularly strong for the parameters driving the portfolio weights but the state variables

also exhibit predictive power for the linear and nonlinear characterizations of the risk aversion

function γ(j). The magnitude of the parameters driving the dynamics of risk aversion for both

the linear and nonlinear models is large. These results are further supported by the different

likelihood ratio tests comparing the model with constant risk aversion against the linear dynamic

model, and the latter model against the model with a threshold nonlinearity in the investment

plan. In particular, the value of the test statistic (24) is 11.93 that yields a p-value of 0.018.

The p-value of the nonlinearity likelihood ratio test is computed using the algorithm described

in the preceding section considering J = 1000 and a partition of the threshold variable given by

ΩN = 2, . . . , 10. The test statistic of the test (20) is very high and the corresponding p-value is
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zero. Figure 1 displays a rough nonparametric estimate of the density function of the supremum

of the simulated chi-square process (29). The importance of the state variables in determining

the individual’s optimal portfolio decisions is mixed and depends on the specific asset of the

portfolio and the model fitted to the data. Thus, most of the state variables exhibit statistical

power to describe the dynamic allocation to bonds in the portfolio, however, this is not the

case for the optimal allocation to stocks. In particular, the one-month average of the excess

stock and bond returns is the only state variable with power to predict changes in the optimal

allocation to the S&P 500 index.

[Insert Table 2 about here]

The interpretation of the parameters driving the dynamics of risk aversion also provides

interesting observations. First, the risk aversion coefficient estimate γ̂c is very significant and

takes values between 3.195 and 3.491. The predictive power of the state variables for the

dynamics of risk aversion is weak as the p-values of the marginal t-tests reveal2. The nonlinear

model is determined by a threshold value of k̂T = 7. The statistical significance of the models

with dynamic risk aversion is empirically supported by the specification tests (30) and (31).

The p-values of the tests oscillate between 0.90 and 0.97 for the three alternative specifications

characterized by different risk aversion functions validating the parametric formulation of the

optimal portfolio weights in (6) and the different specifications of the risk aversion functions in

(3).

To illustrate the dynamics of the risk aversion coefficient we report in figure 2 the functions

γ, γ(j) and γc, with γ =
(
k̂T γ(k̂T ) + (K − k̂T ) γ(k̂T + 1)

)
/K the cross-sectional average of the

risk aversion coefficients across the investment horizon. Note that this function is determined

2Unreported exercises using a convergence criteria of 1e − 07 in the minimization of the GMM algorithm
report p-values smaller than 0.05. Nevertheless, for the sake of comparison across specifications of the objective
function (1), and to save computational time, we have chosen a convergence criteria given by 1e − 05 across
iterations.
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by two regimes given by γ(1) = · · · = γ(k̂T ) = γ′zt and γ(k̂T + 1) = . . . = γ(K) = (γ + η)′zt

denoting the short and long term strategic horizons, respectively; γc denotes the risk aversion

coefficient obtained from the CRRA model exhibiting constant risk aversion. The unconditional

risk aversion coefficient obtained from the latter model is exp(γ̂c) = 33 and is represented by a

flat line. The functions γ (dashed line) and γ(j) (dotted line) exhibit fluctuations around the

flat line after the first years of data. During this period the chart also reveals a larger degree

of risk aversion for the dynamic models than for the static model. This trend is compensated

during the period 2000−2006 corresponding to the Great Moderation. During this episode the

dynamic risk aversion coefficient is below the coefficient γc.

[Insert Figures 1-3 about here]

Figure 3 presents the separate dynamics of the short term γ(k̂T ) and long term γ(k̂T + 1)

risk aversion functions. The solid line corresponds to short term risk aversion and the dashed

line to long term risk aversion. The solid line is stable and oscillates around a value of 33. The

dashed line shows, instead, significant variation reaching values well above the short term risk

aversion coefficients. This phenomenon is particularly relevant during periods corresponding to

crisis episodes such as in the decade of 1980 or the 2007− 2010 period. This finding highlights

the nonlinear behavior of risk averse individuals. The increase in risk aversion due to adverse

market events is mostly reflected in long term risk aversion.

5.2 Robustness analysis

In this section we perform two robustness exercises that assess the consistency of the above

results over other environments. First, we entertain an objective function with K = 24 periods,

and second, we study the implications of the multiperiod utility function for an investor only

concerned with maximizing the utility of wealth (θ = 1).
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Table 3 reports the parameter estimates of the version of model (1) with two years in

the individual’s strategic horizon. The results are similar in spirit to the findings previously

obtained for K = 12, however, for a longer investment plan the state variables become better

predictors, and statistically more significant, of the dynamics of the optimal portfolio weights.

More formally, in contrast to the previous case, the detrended short-term interest rate also

becomes a statistically significant predictor of the allocation to stocks. The optimal allocation

to bonds still benefits from the predictive power of all of the state variables proposed in this

application.

[Insert Table 3 about here]

The specification tests also report p-values near one providing empirical support to the

different specifications of the individual’s multiperiod objective function. The nonstandard

likelihood ratio test reports a value greater than one thousand and hence a p-value of zero

favouring the nonlinear model against the linear model. Figure 4 presents a nonparametric

density function of the associated χ2(ω) process. The likelihood ratio test (20) reports a value

of 91.46 that yields a zero p-value and supports the dynamic linear model against the model

with constant relative risk aversion.

Figure 5 reveals more significant differences between the average nonlinear risk aversion

function γ and the linear function γ(j) than for K = 12. This empirical finding is also noted

in figure 6. This graph shows a significantly higher risk aversion to the long term given by

the function γ(8) than to the short term characterized by γ(7). Interestingly, we find the

same threshold value k̂T = 7 as in the model with twelve periods in the individual’s strategic

horizon. The similarities in the nonlinear function across specifications of the strategic horizon

provide further support to the existence of a threshold nonlinearity in the individual’s objective

function. This observation suggests that as the number of periods in the individual’s strategic
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horizon increases the long term risk aversion component becomes more relevant and leads to

more conservative behaviors.

[Insert Figures 4 - 6 about here]

The second robustness exercise analyses the sensitivity of the results to considering the

optimal choices of an individual obtaining utility from wealth rather than consumption. More

specifically, table 4 reports the parameter estimates driving the optimal portfolio weights and

the different dynamic risk aversion functions for θ = 1 and K = 12. The results are very similar

to the findings obtained in tables 2 and 3. The threshold nonlinearity in the risk aversion

function is also obtained at k̂T = 7. The magnitude of the parameter estimates is similar across

specifications, however, the predictive power of the state variables is statistically much more

significant than in previous specifications based on consumption. Similarly, we observe that

the state variables exhibit stronger power to predict risk aversion than before. This is mainly

reflected in the parameter estimates of the coefficients of risk aversion in the linear dynamic

case and by the different likelihood ratio tests. The test statistic of the nonlinear likelihood

ratio test reports a value of 211 that yields a p-value of zero. Figure 7 reports a nonparametric

estimator of the density function of the supremum of the simulated χ2(ω) process under the

null hypothesis. Similarly, the likelihood ratio test between the linear dynamic model and the

model with constant risk aversion reports a test statistic of 14.89 that yields a p-value of 0.005,

leading us to conclude that the individual’s relative risk aversion coefficient is dynamic.

[Insert Table 4 about here]

In the three specifications the estimates of the risk aversion coefficient γc are greater than

in the models characterized by utility over consumption. The values oscillate in this case

between 4.121 and 4.214 yielding risk aversion coefficients between 62 and 68. Individuals
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become more risk averse when their preferences build over wealth than over consumption.

Figures 8 and 9 report the dynamics of the risk aversion functions in this scenario. The risk

aversion functions γ and γ(j) show very similar patterns. Risk aversion to the long term is still

higher than to the short term but the premium is small compared to previous specifications.

Interestingly, in contrast to the previous specifications characterized by individual’s preferences

over consumption, we observe in this scenario that periods of financial distress trigger increases

in short term risk aversion but not in long term risk aversion.

[Insert Figures 7 - 9 about here]

6 Conclusion

This paper studies the influence of assuming dynamic risk aversion in the optimal asset allo-

cation of strategic individuals concerned with maximizing the utility of their stream of con-

sumption or wealth over multiple, potentially infinite, periods. To do this we have developed

a theoretical and empirical framework in an economy populated by individuals characterized

by three distinguishing features. First, individuals behave strategically in the sense that their

optimal decisions are far sighted as they also obtain utility from periods further into the future.

Second, individuals’ relative risk aversion reacts to macroeconomic and financial conditions

proxied by a set of state variables. Third, the model accommodates nonlinearities in the risk

aversion function that are interpreted as evidence of heterogeneity in the individual’s risk aver-

sion coefficient between the short and long term.

The parameters defining this model are estimated using GMM procedures applied to an

overidentified system of equations describing the first order conditions of the individual’s multi-

period maximization problem. The overidentification property allows us to test the suitability

of the parametric specifications defining our model specification: a linear portfolio policy rule
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for the dynamics of the portfolio weights and a threshold piecewise linear specification for the

relative risk aversion coefficient.

The empirical application to a tactical portfolio of three assets - a one-month Treasury bill

as riskless security, a long-term bond, and an equity portfolio finds overwhelming empirical

evidence of the presence of dynamics and nonlinearities in the risk aversion coefficient. The

different dynamics reported by the two segments of the risk aversion function are interpreted as

risk aversion to the short term and long term, respectively. The state variables proposed in this

paper to describe the dynamics of the optimal portfolio weights exhibit more predictive power,

and hence, more exposure to the allocation to bonds than stocks. All of the state variables

proposed in our study have statistical relevance to explain the dynamic allocation to bonds,

however, the allocation to stocks is mainly driven by the one-month average of the excess stock

and bond returns. Similarly, our model reveals that the dynamics of the risk aversion coefficient

are determined by the U.S. credit spread, defined as the yield difference between Moody’s Baa-

and Aaa-rated corporate bonds and the S&P 500 momentum, defined as the difference between

the log of the current S&P 500 index level and the average index level over the previous 12

months.
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Tables and figures

asset Mean Volatility Sharpe ratio Skewness Kurtosis

S&P500 index 0.027 0.131 0.210 -1.120 4.88

G0Q0 Bond index 0.029 0.056 0.510 0.151 2.170

rf 0.018 0.021 – 0.380 3.16

Table 1. Summary statistics of the excess stock return, excess bond return and short-term

ex-post real interest rates over the period January 1980 to December 2010. The return horizon

is one month. Mean and volatility are expressed in annualized terms.
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stock parameters bond parameters

θ nonlinear dynamics constant θ nonlinear dynamics constant

λs,c 0.177
[0.029]

0.166
[0.011]

0.182
[0.007]

λb,c 0.393
[0.032]

0.343
[0.028]

0.303
[0.026]

λs,1 0.081
[0.162]

0.038
[0.267]

0.036
[0.249]

λb,1 −0.115
[0.138]

−0.156
[0.036]

−0.180
[0.016]

λs,2 −0.006
[0.899]

0.032
[0.356]

0.041
[0.145]

λb,2 −0.696
[0.014]

−0.638
[0.006]

−0.624
[0.005]

λs,3 −0.032
[0.560]

−0.024
[0.493]

−0.034
[0.294]

λb,3 −0.608
[0.018]

−0.516
[0.010]

−0.511
[0.008]

λs,4 0.456
[0.013]

0.421
[0.008]

0.488
[0.006]

λb,4 −0.251
[0.058]

−0.235
[0.026]

−0.207
[0.024]

short term regime long term regime

θ nonlinear dynamics constant θ nonlinear dynamics constant

γc 3.195
[0.000]

3.491
[0.000]

3.467
[0.000]

ηc 0.365
[0.307]

– –

γ1 0.082
[0.484]

−0.004
[0.961]

– η1 −0.196
[0.571]

– –

γ2 0.061
[0.732]

0.097
[0.221]

– η2 0.352
[0.543]

– –

γ3 0.030
[0.825]

0.101
[0.148]

– η3 0.248
[0.453]

– –

γ4 0.343
[0.101]

0.182
[0.289]

– η4 −0.433
[0.314]

– –

Table 2. Parameter estimates of the three different versions of the individual’s objective function

(1). The model is completed by assuming K = 12, θ = 0.999 and β = 0.95. The state variables

zt are the detrended short-term interest rate, the U.S. credit spread, the S&P 500 trend and

the one-month average of the excess stock and bond returns.
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stock parameters bond parameters

θ nonlinear dynamics constant θ nonlinear dynamics constant

λs,c 0.198
[0.087]

0.205
[0.000]

0.260
[0.000]

λb,c 0.598
[0.053]

0.349
[0.005]

0.415
[0.000]

λs,1 0.061
[0.293]

0.083
[0.011]

0.049
[0.146]

λb,1 −0.246
[0.066]

−0.266
[0.000]

−0.323
[0.000]

λs,2 −0.048
[0.450]

−0.027
[0.474]

−0.039
[0.233]

λb,2 −0.961
[0.031]

−0.809
[0.000]

−0.879
[0.000]

λs,3 0.047
[0.426]

0.001
[0.972]

0.014
[0.611]

λb,3 −0.804
[0.047]

−0.697
[0.006]

−0.701
[0.003]

λs,4 0.616
[0.030]

0.615
[0.000]

0.797
[0.000]

λb,4 −0.411
[0.041]

−0.305
[0.000]

−0.282
[0.000]

short term regime long term regime

θ nonlinear dynamics constant θ nonlinear dynamics constant

γc 2.938
[0.000]

3.195
[0.000]

3.033
[0.000]

ηc 0.668
[0.106]

– –

γ1 −0.041
[0.669]

−0.077
[0.259]

– η1 −0.309
[0.087]

– –

γ2 0.241
[0.040]

0.053
[0.278]

– η2 0.114
[0.777]

– –

γ3 0.254
[0.032]

0.236
[0.000]

– η3 0.414
[0.170]

– –

γ4 0.209
[0.321]

0.018
[0.908]

– η4 −0.254
[0.559]

–

Table 3. Parameter estimates of the three different versions of the individual’s objective function

(1). The model is completed by assuming K = 24, θ = 0.999 and β = 0.95. The state variables

zt are the detrended short-term interest rate, the U.S. credit spread, the S&P 500 trend and

the one-month average of the excess stock and bond returns.
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stock parameters bond parameters

θ nonlinear dynamics constant θ nonlinear dynamics constant

λs,c 0.068
[0.014]

0.075
[0.004]

0.084
[0.000]

λb,c 0.165
[0.006]

0.161
[0.004]

0.146
[0.002]

λs,1 0.040
[0.085]

0.036
[0.059]

0.033
[0.043]

λb,1 −0.054
[0.182]

−0.045
[0.217]

−0.064
[0.033]

λs,2 0.024
[0.185]

0.032
[0.068]

0.033
[0.015]

λb,2 −0.313
[0.000]

−0.322
[0.000]

−0.325
[0.000]

λs,3 −0.007
[0.703]

−0.006
[0.661]

−0.012
[0.391]

λb,3 −0.240
[0.000]

−0.243
[0.000]

−0.241
[0.000]

λs,4 0.221
[0.000]

0.217
[0.000]

0.246
[0.000]

λb,4 −0.099
[0.059]

−0.094
[0.041]

−0.091
[0.026]

short term regime long term regime

θ nonlinear dynamics constant θ nonlinear dynamics constant

γc 4.121
[0.000]

4.214
[0.000]

4.171
[0.000]

ηc 0.170
[0.619]

– –

γ1 −0.002
[0.979]

0.007
[0.924]

– η1 −0.043
[0.882]

– –

γ2 0.185
[0.318]

0.110
[0.096]

– η2 −0.016
[0.973]

– –

γ3 0.110
[0.318]

0.126
[0.064]

– η3 0.105
[0.637]

– –

γ4 0.288
[0.123]

0.094
[0.653]

– η4 −0.338
[0.448]

– –

Table 4. Parameter estimates of the three different versions of the individual’s objective function

(1). The model is completed by assuming K = 12, θ = 1 and β = 0.95. The state variables zt

are the detrended short-term interest rate, the U.S. credit spread, the S&P 500 trend and the

one-month average of the excess stock and bond returns.
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Figure 1. Nonparametric density function for the likelihood ratio test (20) for the case when ω

is not observed. The asymptotic distribution of the χ2(ω) process (26) is approximated using

the p-value transformation discussed in the paper; J = 1000 and a partition of [0, 1] given by

ΩN = 2, . . . , 10. The objective function (1) considers K = 12 and ct = (1−θ)wt with θ = 0.999.
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Figure 2. Dynamics of risk aversion over the sample period January 1980 to December 2010.

The flat line corresponds to the model with constant risk aversion. The dashed line corresponds

to the nonlinear threshold model and the dotted line corresponds to the model with linear

dynamics. The time series of risk aversion for the nonlinear model is constructed as a weighted

average of the short term and long term risk aversion coefficients. The objective function (1)

considers K = 12 and ct = (1− θ)wt with θ = 0.999.
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Figure 3. Dynamics of risk aversion over the sample period January 1980 to December 2010.

The solid line corresponds to the dynamics of short term risk aversion characterized by the

first seven periods of the individual’s investment horizon. The dashed line corresponds to the

dynamics of long term risk aversion. The flat line corresponds to the model with constant risk

aversion. The objective function (1) considers K = 12 and ct = (1− θ)wt with θ = 0.999.
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Figure 4. Nonparametric density function for the likelihood ratio test (20) for the case when ω

is not observed. The asymptotic distribution of the χ2(ω) process (26) is approximated using

the p-value transformation discussed in the paper; J = 1000 and a partition of [0, 1] given by

ΩN = 2, . . . , 20. The objective function (1) considers K = 24 and ct = (1−θ)wt with θ = 0.999.
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Figure 5. Dynamics of risk aversion over the sample period January 1980 to December 2010.

The flat line corresponds to the model with constant risk aversion. The dashed line corresponds

to the nonlinear threshold model and the dotted line corresponds to the model with linear

dynamics. The time series of risk aversion for the nonlinear model is constructed as a weighted

average of the short term and long term risk aversion coefficients. The objective function (1)

considers K = 24 and ct = (1− θ)wt with θ = 0.999.
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Figure 6. Dynamics of risk aversion over the sample period January 1980 to December 2010.

The solid line corresponds to the dynamics of short term risk aversion characterized by the

first seven periods of the individual’s investment horizon. The dashed line corresponds to the

dynamics of long term risk aversion. The flat line corresponds to the model with constant risk

aversion. The objective function (1) considers K = 24 and ct = (1− θ)wt with θ = 0.999.
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Figure 7. Nonparametric density function for the likelihood ratio test (20) for the case when ω

is not observed. The asymptotic distribution of the χ2(ω) process (26) is approximated using

the p-value transformation discussed in the paper; J = 1000 and a partition of [0, 1] given by

ΩN = 2, . . . , 10. The objective function (1) considers K = 12 and no consumption.
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Figure 8. Dynamics of risk aversion over the sample period January 1980 to December 2010.

The flat line corresponds to the model with constant risk aversion. The dashed line corresponds

to the nonlinear threshold model and the dotted line corresponds to the model with linear

dynamics. The time series of risk aversion for the nonlinear model is constructed as a weighted

average of the short term and long term risk aversion coefficients. The objective function (1)

considers K = 12 and no consumption.
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Figure 9. Dynamics of risk aversion over the sample period January 1980 to December 2010.

The solid line corresponds to the dynamics of short term risk aversion characterized by the

first seven periods of the individual’s investment horizon. The dashed line corresponds to the

dynamics of long term risk aversion. The flat line corresponds to the model with constant risk

aversion. The objective function (1) considers K = 12 and no consumption.
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